?2022年海南專升本《高等數(shù)學》考試大綱
摘要:本文是2022年海南專升本《高等數(shù)學》考試大綱,本大綱對內(nèi)容要求的高低用不同的詞匯加以區(qū)分,考試要求對概念和理論從高到低分“理解”和“了解”兩個層次;對方法和運算從高到低分“掌握”和“會”二個層次。詳情見下文
《高等數(shù)學》考試大綱
說明:本大綱對內(nèi)容要求的高低用不同的詞匯加以區(qū)分,對概念和理論從高到低分“理解”和“了解”兩個層次;對方法和運算從高到低分“掌握”和“會”二個層次。
一、函數(shù)、極限、連續(xù)
理解函數(shù)概念,掌握基本初等函數(shù)的性質(zhì)與圖形,了解極限的定義,掌握極限的四則運算法則,掌握用兩個重要極限來求某些極限的方法,理解無窮大與無窮小的概念,理解函數(shù)連續(xù)性的概念,會判別函數(shù)間斷點的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理)并會應用這些性質(zhì)。
二、一元函數(shù)微分學
理解導數(shù)與微分的概念,理解導數(shù)的幾何意義,會求平面曲線的切線和法線方程;了解導數(shù)的物理意義;理解函數(shù)的可導與連續(xù)之間的關系。掌握導數(shù)與微分的四則運算法則和復合函數(shù)的求導法,掌握基本的求導公式。了解高階導數(shù)的概念,會求函數(shù)的高階導數(shù)。
理解羅爾定理、拉格朗日中值定理;掌握用洛必達法則求未定式的極限的方法。掌握用導數(shù)判別函數(shù)的增減性及求函數(shù)的極值、最大值和最小值的方法。會用導數(shù)判斷函數(shù)圖形的凹凸性,會求拐點,會描繪較簡單的函數(shù)的圖形。
三、一元函數(shù)積分學
理解原函數(shù)、不定積分、定積分概念,理解積分中值定理。掌握不定積分和定積分換元法和分部積分法,會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分。理解積分上限函數(shù)及其求導定理,熟練掌握牛頓一萊布尼茲公式。了解廣義積分的概念。掌握用定積分表達和計算一些幾何量與物理量(如面積、體積)的方法。
四、向量代數(shù)與空間解析幾何
理解向量與空問直角坐標系的概念。掌握向量的線性運算、數(shù)量與向量積,理解兩個向量垂直和平行的條件。掌握單位向量、方向數(shù)與方向余弦,向量的坐標表達式以及用坐標表達式進行向量運算的方法。掌握平面與直線方程及其求法,理解曲面方程概念,掌握常用二次曲面的方程與圖形,了解空間曲線的方程。
五、多元函數(shù)微分學
理解多元函數(shù)概念,了解二元函數(shù)極限與連續(xù)概念以及有界閉區(qū)域上連續(xù)函數(shù)性質(zhì)。理解偏導數(shù)、方向?qū)?shù)、梯度和全微分概念并掌握它們的計算方法。了解全微分存在的必要和充分條件。掌握復合函數(shù)與隱函數(shù)的一、二階導數(shù)的求法,了解曲線的切線及曲面的切平面與法線,會求函數(shù)的極值,會解決簡單的最值問題。
六、多元函數(shù)積分學
理解二重積分的概念并掌握其計算方法(直角坐標與極坐標),并會用二重積分來計算一些幾何與物理量(如面積、體積、弧長、質(zhì)量、重心)。
七、無窮級數(shù)
理解數(shù)項級數(shù)收斂、發(fā)散以及和的概念,掌握級數(shù)的基本性質(zhì)及收斂的必要條件。掌握幾何級數(shù)和P級數(shù)的收斂性。掌握正項級數(shù)的比較審斂法、比值審斂法、交錯級數(shù)的萊布尼茲定理。了解級數(shù)的絕對收斂與條件收斂的概念,以及絕對收斂與條件收斂的關系。掌握冪級數(shù)的收斂半徑、收斂域的求法,了解冪級數(shù)在其收斂域內(nèi)的基本性質(zhì)。掌握基本初等函數(shù)展開為泰勒級數(shù)的冪級數(shù)展開式。
八、微分方程
了解微分方程及其解、通解、初始條件和特解等概念,掌握變量可分離方程及一階線性微分方程的解法,了解齊次方程的解法。了解線性微分方程解的性質(zhì)及結(jié)構(gòu)定理。
參考書目:
l、《高等數(shù)學》上冊.盛祥耀編.高等教育出版社.2008年4月第三版
2、《高等數(shù)學》下冊.盛祥耀編.高等教育出版社.2008年4月第三版
延伸閱讀
- 2024年海南省普通專升本各科目考試大綱匯總
- 2023年海南專升本考試大綱匯總
- 2023年海南專升本無機化學考試大綱
- 2023年海南專升本城市建設史考試大綱
- 2023年海南專升本航海概論考試大綱
- 2023年海南專升本美術基礎考試大綱
專升本微信公眾號
掃碼添加
專升本備考資料免費領取
去領取